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A Vectorizable Random Lattice 

C. Moukarze l  I and H. J. Herrmann 1 

Received January 22, 1992 

We describe a family of random lattices in which the connectivity is determined 
by the Voronoi construction while the vectorizability is not lost. We can 
continuously vary the degree of randomness  so in a certain limit a regular lattice 
is recovered. Several statistical properties of the cells and bonds of these lattices 
are measured. We also study anisotropy effects on the numerical solution of the 
Laplace equation for varying degrees of randomness.  
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1. I N T R O D U C T I O N  

The introduction of a spatiotemporal lattice for the discretization of physi- 
cal systems is a widely used tool as a means to regularize field theories or 
just to numerically solve some continuous equation. The underlying 
assumption in doing so, i.e., the existence of a well-defined continuum limit, 
may be broken by the regularity of the lattice, which reduces the 
symmetries of the physical system to a discrete set of transformations. We 
will losely refer to this as the anisotropy of the lattice. 

A way out of this problem has been proposed by Christ et al., ~1~ who 
describe how to discretize a system by making use of a random lattice (RL), 
that is, one for which the sites are a set of randomly chosen points with 
uniform distribution. In this way the spatiotemporal symmetries of the 
continuum system are recovered after averaging over lattice realizations. 
The number of lattice points on a given volume V is then a random 
variable with Poisson distribution. We can then call these lattices Poisson 
random lattices (PRL). 

From the numerical point of view this approach is disadvantageous 
because the regularities of a lattice can often be employed to substantially 
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improve the performance of the simulation. No such regularities exist on 
the RL which have been defined so far, so it has not been possible to 
perform large-scale simulations on them. The reason is of course the lack 
of parallelism produced by the fact that each site has different charac- 
teristics. The number and relative location of the nearest neighbors of a 
given site are themselves. In fact, for the PRL the number of nearest 
neighbors of a site is not even bounded, basically because any spatial 
ditribution of points is possible. 

Our goal here is to define a new type of random lattice that does not 
introduce any anisotropy into the system, but it is still vectorizable or 
parallelizable. For  this to be achieved we have to retain a certain degree of 
regularity that, being enough to enable vectorization, does not appear in 
the numerical solution of a physical system. The degree of randomness is 
a tunable parameter in our family of lattices. When this randomness is 
completely eliminated a regular lattice is recovered and anisotropic effects 
show up again. 

In Section 2 we generally review the basics of random lattices and in 
Section 3 we introduce the vectorizable random lattice (VRL). Some 
statistic properties of the VRL have been measured and the results are 
described in Section4. Section 5 contains a quantitative analysis of 
anisotropy effects on the numerical solution of the Laplace equation for 
varying degrees of randomness, while Section 6 contains our conclusions. 

2. R A N D O M  LATTICES 

Given a set of arbitrarily distributed points in d-dimensional space, a 
natural prescription for interconnecting them is the following(2): 

First determine the Voronoi cells associated to these sites, that is, the 
open subsets of space points that are nearer to a given site than to any 
other. Neighboring cells will then share a face. Each pair of sites whose 
cells share a face are defined to be connected by a link. This link is 
perpendicular to this face, but does not always intersect it. An alternative 
and equivalent definition is the one due to Christ et al.(l): Any set of d +  1 
such points is said to form a d-simplex if the d-dimensional hypersphere in 
which they are inscribed (its circumscribed hypersphere) contains no other 
point inside. Any two points of a d-simplex will be connected by a link. 
Such simplices are nonoverlapping and their superposition covers the 
entire space. (1) This construction we will call the direct lattice. In two 
dimensions the simplices are triangles, in three dimensions they are 
tetrahedra, and so on. 

The direct lattice and the Voronoi lattice are dual to each other. The 
Voronoi cells are delimited by (d-1)-d imensional  hyperplanes (faces) 
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which are shared by two neighboring cells. These hyperplanes are delimited 
by (d-2) -d imensional  hyperplanes and so on. The sites of the Voronoi 
lattice are the zero-dimensional intersections of d +  1 cells. There is a one- 
to-one correspondence between sites of the direct lattice and Voronoi cells, 
in the same way as between sites of the Voronoi lattice and d-simplices. In 
general there is a mapping between (d-d*) -d imens iona l  objects in the 
direct lattice and d*-dimensional objects in the dual lattice. We see the 
problem of finding the connectivities of the direct lattice is fully equivalent 
to that of finding the associated Voronoi cell construction, for any given set 
of points. 

Once the lattice connectivities have been found, one has to describe 
the particular physical system of interest, writing down its constitutive 
equations in terms of discrete variables defined on nodes, links, plaquettes, 
etc. It is not always clear how to do this, and for certain system which do 
not have a continuum counterpart there is indeed a certain ambiguity in 
this step. But in some cases where the continuum equations are known, a 
presciption can be given to write down the equations of motion in terms 
of the discrete versions of the (in general differential) operators of the 
theory. A very comprehensive review of the way in which this is done can 
be found in the work of Itzykson. (3) 

In the specific case of solving the Laplace equation on a random 
lattice one obtains a set of linear equations of the form 

- (~+), = ~ (0~- +j)o~ o. = o (I) 
J(i) 

where J(o are the neighbors of i and co U are coupling constants that are 
calculated in terms of the geometrical properties of the (Voronoi) ceils i 
and j,(3) 

1 6~ 
~o~j = --  - -  (2) 

~r~ lq 

where ai is the area of the Voronoi cell i, a 0 is the length of the common 
face between cells i and j, and lij is the distance between sites i and j. 

3. THE VECTORIZABLE RANDOM LATTICE (VRL) 

From the point of view of algorithmic parallelism, two conditions are 
desirable in the case of lattice systems: 

(a) The possibility to label the sites of the lattice by a n-tuple of 
integers. 
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(b) The existence of a regularity in the neighborhoods of the sites in 
the sense that, given any site, one has a simple rule to know which are its 
neighbors. 

Neither of these is satisfied for a random lattice of the type described 
above. In fact, we have unsuccessfully attempted to define at least a regular 
labeling in the case of two-dimensional Poissonian random lattices. 

To overcome these difficulties, we introduce a lattice in which these 
two conditions are met by construction, but one in which there is a certain 
degree of disorder which should avoid anisotropy. The only step we have 
to change to get this is the way in which the lattice sites sites are chosen 
in space, in the following way: 

Let us describe the idea for the case of a two-dimensional lattice. We 
first define a regular (e.g., square) lattice, which we call the reference lattice. 
The Voronoi cells dual to its sites are in this case squares that do not 
overlap and tile the entire space. We call them reference cells. 

Next we randomly pick in each cell a point with uniform distribution. 
These will be the sites of our direct lattice. The spatial distribution of these 
points is homogeneous, i.e., P(x) = const. The last step is to define the con- 
nectivity of each point according to the usual prescription, ~1) i.e., take three 

Fig. 1. An example of the vectorizable random lattice with 61 • 61 sites. Periodic boundary 
conditions were used. Notice the regularity in triangle size as compared to the Poissonian 
random lattice (Fig. 2). 
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points, and check whether their circumscribing circle (the smallest circle in 
which they are all located) contains no other point inside. If this is so, these 
three points will form a triangle and they will be connected to each other. 

In Fig. 1 we show an example of a lattice which has been constructed 
according to this prescription. We can see that the appearance is so 
random that one is not able to recognize the underlying regularity with the 
naked eye. We also include for comparison an example of the Poissonian 
random lattice with the same number of points (Fig. 2). 

For  the vectorizable random lattice, condition (a) is met by construc- 
tion in a trivial way. The second condition is not fully satisfied, because the 
connectivities of different sites will still be random, but now we have the 
advantage that their number  is bounded. Owing to the fact that each 
reference cell has to contain one and only one point, it is easily seen that 
not any pair of points can be connected. Regardless of the actual positions 
that the sites have inside their reference cells, if we take two of them which 
are sufficiently far apart, then any circumscribing circle in which these lie 
will also contain entire reference cells inside and so necessarily their 
associated sites. 

Let us suppose that site Xo belongs to the cell Co of the reference 
lattice. Then the only sites xj that can be connected to Xo are those 

Fig. 2. An example of the Poissonian random lattice with 3600 sites. Lattice sites are in this 
case randomly located on the plane. 
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belonging to a certain cluster of reference cells around Co. We call this 
cluster the potential neighbors of x o and it can be easily determined for each 
type of lattice. 

In Fig. 3 we show the cluster of potential neighbors around a given 
site of the square lattice. The circumscribing circles pass through three 
points, one of which is the central one x 0. For  sites xk outside the cluster 
it is easily seen that there exists no circle passing through Xo and xk that 
does not contain at least another point inside. 

Since we do not know in advance which ones of the potential 
neighbors of a given site will be connected to it (this will depend on the 
relative location of the sites within the cells), we can proceed as if all of 
them were connected, because their number is limited. Algorithmically 
speaking, each time an operation requires the use of the neighbors of a site, 
we will go through all sites which are potential neighbors, but of course 
only those which are really connected will have a nonzero coupling. 

In a square lattice the potential neighbors belong to a polygon which 
can be inscribed in a 7 x 7 square around the central site (Fig. 3). In the 
triangular lattice, the potential neighbors are all those which are not 
farthest than third nearest neighbors. 

Essential to allow for vectorization or parallelization of the system is 
that the number of potential neighbors of a given site is limited and their 
location is known, even when not all of them will be connected to it. While 
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the mean number of neighbors per site is six, the number of potential 
neighbors one has to take into account can be still quite high, 36 in 
the square lattice and 42 in the triangular lattice. Now we describe a 
further modification that improves the performance of the simulations by 
discarding from the cluster of potential neighbors those sites with very low 
probability of connection. 

We have measured the probability for a potential neighbor to be 
connected, by averaging over 106 sites, and found the results shown in 
Fig. 3. We see that there are sites with a very low probability, namely of 
order 10 5, to be connected. These are mostly outside the 5 x 5 square 
around the central site. On the other hand, the innermost sites have 
connection probabilities of order 10 2 or higher, so in this lattice there 
exists a natural division allowing the reduction of the number of potential 
neighbors. To implement this reduction of the potential neighborhood, we 
consider this outer shell of highly improbable connections as "forbidden" 
and accept only those lattices with no forbidden connections. In this work 
we have taken as "allowed" connections only those to cells contained in the 
5 x 5 cluster around a site, with the exception of its corners [(_+2, +_2) in 
local coordinates],  so reducing the potential neighborhood to 20 sites. 

In practice we calculate the connectivities of the sites according to the 
Voronoi prescription. Next all sites with forbidden conections are removed 
and again a new random point is selected in their cells. The connectivities 
are then recalculated. This procedure is repeated until no forbidden 
connections appear. We do not expect the modifications introduced in this 
way to be relevant, because the appearance of forbidden connections is 
itself very rare. Typically one or two sites will have to be corrected in a 
lattice of l 0  4 sites. 

On these lattices we used the conjugate gradient method to solve 
numerically the Laplace equation. For comparison the same was 
implemented on the regular square lattice, in which case one can substan- 
tially reduce the number of code lines. We give for comparison the cpu time 
per sweep for both, running on one processor of the Cray Y-MP: 

For  the case of the regular square latice of size 101 x 101 the per- 
formance is 2.4 x 10 .3 sec/sweep, while for the random lattice of the same 
size we need 6.4 x 10 3 sec/sweep. We see that there is a downgrading by 
a factor of about three, due to the greater number of neighbors one has to 
take into account in each loop. But both codes vectorize. 

Finally let us mention that the way in which these lattices are defined 
allows us to tune its degree of randomness. One possible and simple way 
of doing so is, for example, reducing the size of the regions in which the 
points are chosen randomly by scaling them down by a factor A. We 
choose then these regions to be squares of length A in the center of the 
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reference cells, of length unity. This sites of the r a n d o m  lat t ice will then be 
confined to be enclosed wi thin  these reduced regions. We have in this way 
a family of  r a n d o m  latt ices character ized by a number  A, 0 ~< A ~< 1, such 
that  in the l imit  A = 1 max ima l  r andomness  is ob ta ined ,  while for A = 0 we 

recover  the regular  reference lattice. 

4. S T A T I S T I C A L  P R O P E R T I E S  O F  T H E  V R L  

We have measured  several  s tat is t ical  p roper t ies  of these lattices for 

A = 1. In  Table  I we can see the d i s t r ibu t ion  of the number  of ne ighbors  n 
averaged  over  10 6 latt ices sites. The  m a x i m u m  number  of ne ighbors  we 
have found is 12, with one event  out  of 10 6 . I t  is reasonable  that  c o m p a r e d  
to the same d i s t r ibu t ion  in the Po i s son ian  r a n d o m  lattice, (4) in this case the 
tail  of  high n is s t rongly  suppressed  due to the existence for an upper  

bound.  
The  area  (f2) d i s t r ibu t ion  of the Vorono i  po lygons  has also been 

numer ica l ly  es t imated,  and  it is found to be app rox ima te ly  symmetr ic  
a r o u n d  (2 = 1 (Fig. 4). C o m p a r i n g  to the case of Po isson ian  RL, ~3'4) we 

find tha t  12 has less f luctuat ions  in this case, and  its d i s t r ibu t ion  is more  
symmetr ic .  Very large as well as very small  areas  are highly improba b l e  for 
our  lattices. The  same s i tua t ion  is found when po lygon  per imeters  (Fig. 4) 

Tablel .  Distribution of the N u m b e r n o f  
Neighbors in the VRL, Estimated from 

10 s Statistically Independent Cells 

n Probability 

1 0.0t3 
2 0.00 
3 1.650 x 10 -3 
4 5.615 • 10 -2 
5 2.671 • 10 - t  
6 3.775 x 10 -1 
7 2.232x 10 1 
8 6.415 • 10-2 
9 9.301 • 1 0  - 3  

10 8.270x 10 4 
11 4.700• 5 
12 1.000 • 1 0  - 6  

13 0.00 
14 0.00 
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Fig. 4. Distribution of areas and perimeters of Voronoi cells in the vectorizable random 
lattice, estimated from 10 6 independent neighborhoods. The perimeter scale has been reduced 
by a factor 1/4. 

or distances to neighbors (Fig. 5) are measured. Their distributions are in 
this case very highly peaked around the average value. 

The sites in these lattices are kept apart by the constraint that no two 
sites can lie within the same reference cell. The maximum number of points 
that can be arbitrarily close in this case is four. It is also reasonable to 
expect that the problems found in Poissonian RL, (3) which are associated 
with the existence of points extremely close to each other, will be less severe 
in the VRL due to the suppression of very close neighbors. 

We have also measured the average properties of the links of this 
lattice. The first such magnitude is the probability Pc(r, O) that a site 

L.2 

1.0 

0.4 

0.8 

0.6 

0.2 

0 . 0  I 
0.0 2.5 

I I I I I 

0.5 1.0 1.5 2.0 

D i s t a n c e  to  n e i g h b o r s  d 

A Vectorizable Random Lattice 919 
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Fig. 5. Distribution of distances between the central site and the neighbors which are 
connected in the vectorizable random lattice, estimated from 10 6 independent neighborhoods. 
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Fig. 6. Probability Pc(r, O) per unit area to find a (connected) neighbor at the position (r, 0) 
from a site, in polar coordinates, estimated by averaging over 10 6 independent cells of the 
vectorizable random lattice. We have plotted Pc(r, O) as a function of 0 for several values of 
r: (a) r~<0.3, (b) 0.3~<r~<0.6, (c) 0.6~<r<~0.9, (d) 0.9~<r~<1.2, (e) 1.2~<r~<1.5, 
(f) 1.5~<r~<1.8, (g) 1.8~<r~<2.1, (h) 2.1~<r~<2.4. Due to the fourfold symmetry of the 
problem we only show the sector 0 ~< 0 ~< ~z/2. 

located at (0, 0) has a neighbor at the point (r, 0) in polar coordinates. If 
the local properties of the lattice were fully isotropic, no 0 dependence 
would be observable. In Fig. 6 a plot is shown of this Pc as a function of 
0 for several values of r. We only show the 0 ~< 0 ~< 7z/2 sector. These values 
were obtained by making a histogram in two variables and averaging over 
10 6 independent cells. 

It is evident from this plot that the spatial distribution of neighbors 
still has some mild anisotropy. This is of course not surprising, because the 
reference lattice is anisotropic, so even though the distribution of lattice 
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Fig. 7. The average coupling w(r, O) corresponding to the discrete Laplace equation, plotted 
in the same way as in Fig. 6. The coupling shows a monotonic decrease with the distance 
between sites due to the factor I/l o. in the definition of w u [Eq. (2)].  
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points P(x) is itself homogeneous in space, the combined probability 
P(xl, x2) has a weak anisotropic bias. 

A similar magnitude one can measure is the mean value of the 
coupling ~+](r, 0) for the case of the discretized Laplace equation [-Eq. (1)]. 
This is shown in Fig. 7, and similar effects are apparent there. 

Nevertheless, the point is whether this anisotropy has a physically 
observable effect. We will later see that it is so mild that it does not show 
up in the numerical solution of the Laplace equation. 

5. GLOBAL ISOTROPY 

In this section we report our measurements of the anisotropic effects 
on the numerical solution of the Laplace equation 

(3) 

for varying degrees of randomness. We first find numerically the potential 
of a charge on a two-dimensional space with fixed boundary conditions on 
a circular border. After averaging over 200 lattice realizations we get 
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Fig. 8. Reduced fourth-order coefficients in the cosine transform (for its 0 dependence) of 
Laplacian field on the VRL (the boundary conditions are constant  on a circle with r =  50), 
as a function of the "disorder parameter" A and for several values of the distance to the origin. 
The field was averaged over 200 random lattices before calculating its cosine transform. For 
A = 0 (regular square lattice) there is a strong anisotropic effect at small distances from the 
central charge. For A =  1 (maximally disordered VRL), this effect is almost zero at all 
distances. 
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~(r, 0). The r values were discretized in the form r n = 2 (n- 2~/2 so as to get 
equally spaced values for log r. The 0 values were also isospaced between 
0 and 27c. 

Since for each lattice the field is only known on the sites, we had to 
interpolate to find its values on arbitrary points. This we did by identifying 
the triangle to which this point belongs and interpolating the values of ~b 
inside by a plane. In this way we obtained, for each lattice, the values of 
~b on concentric circles with radii r,,. 

For  each value of rn we calculated the cosine transform of q~(r, 0) to 
get the Fourier coefficients Ck(n). The relevant magnitude, in this case the 
"fourfold anisotropy," is C4/Co, which depends on r (the distance from the 
center) and on A (the degree of anisotropy of the lattice). 

In Fig. 8 we show the results for this magnitude. For  the square lattice 
(A = 0) we see that at low distances a certain anisotropy is present, but it 
decays as the distance from the center is increased. On the other hand, in 
the random lattice limit (A = 1) the anisotropy is almost zero at any 
distance from the origin. 

6. C O N C L U S I O N S  

We have defined a new type of random lattice on which it is possible 
to attain algorithmic parallelism, so enabling vectorization or paralMiza- 
tion. The advantage from the point of view of computation is that large- 
scale simulations on random lattices will be more feasible. The random 
lattices previously defined did not allow for any degree of parallelization, 
so the size of the systems which could be explored was limited. 

The idea is to define the sites of the lattice by randomly picking 
points in space, but only one in each square of a regular lattice, with 
homogeneous distribution. The connectivities are determined by looking at 
the Voronoi cells, as described, for example, in ref. 2, so the appearance of 
the lattice is fully random, but vectorizability is not lost. 

Several statistical properties of the cells and bonds of these lattices 
were measured. A very mild anisotropy in their local properties was 
revealed, but it does not seem to show up in the solution of the Laplace 
equation on these lattices. Of course this does not mean that this lattice 
will be fully isotropic for any physical system. It could be that for some 
other model which is more sensitive to small amounts of anisotropy, these 
lattices may still have some anisotropic effects. 

One such example could be the noise-reduced version of DLA, (5) 
which is known to be very sensitively affected by lattice effects. We are 
presently investigating this case. 
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The idea enabl ing  the defini t ion of these vector izable  r a n d o m  latt ices 

can be appl ied  for any  under ly ing  regular  or  i r regular  reference lat t ice in 
any dimensions.  In  general  terms one should  de te rmine  for the reference 
lat t ice of interest  the associa ted  Vorono i  cells and  in each of  them pick a 
po in t  at  r a n d o m  with uni form dis t r ibut ion.  

In  this way further genera l iza t ion  is possible:  One  could  take a 
vector izable  r a n d o m  lat t ice as a reference lat t ice and  in each Vorono i  
cell define a lat t ice site as described.  This would  give rise to a "second-  
genera t ion"  vector izable  r a n d o m  lat t ice with less m e m o r y  of the first 
regular  lattice, and  so on. 
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